【#1】Nội Dung Chính 1. Mở Đầu 2. Định Luật Coulomb 3. Điện Trường 4. Điện Thông, Định Lý Ostrogradski

3 Ở ĐẦU 1. Điện là một thuộc tính nội tại của vật chất (giống như khối lượng của vật). Có hai loại điện tích là điện tích dương (+) và âm (-). v Quy ước Điện tích của thuỷ tinh khi cọ xát vào lụa là điện tích dương (+) Điện tích của thanh nhựa sẫm màu khi cọ xát vào vải khô là điện tích âm (-) 3. Điện tích có giá tị nhỏ nhất bằng C gọi là điện tích nguyên tố (1e = C) 4. Điện tích của một vật tích điện luôn có giá tị gián đoạn và bằng bội số của điện tích nguyên tố Q = ne, n là một số nguyên. 5. Đơn vị của điện tích là coulomb (C)

4 ĐỊNH LUẬT COULOB 1. Phát biểu định luật v Lực tương tác giữa hai điện tích điểm 1 và có độ lớn tỉ lệ thuận với tích độ lớn của chúng và tỉ lệ nghịch với bình phương khoảng cách giữa chúng. Biểu thức v Tong chân không: 1 v Tong môi tường vật chất: F k k F 1 k Nm Nm /C /C ε = 8, (F/m) là hằng số điện thẩm của chân không ε là hằng số điện môi tỷ đối của môi tường

5 ĐỊNH LUẬT COULOB 1. Phương chiều của lực tác dụng v Phương: nằm tên đường thẳng nối hai điện tích (lực xuyên tâm) v Chiều: các điện tích cùng dấu thì đẩy nhau, khác dấu thì hút nhau F 1 F 1 F F 1 1 F1 F1 k 3 F 1 F 1 1

6 ĐỊNH LUẬT COULOB 1. Ví dụ: Khoảng cách giữa electon và poton tong Nguyên tử hydo là m. Xác định độ lớn của lực tương tác tĩnhđiện giữa chúng.. Bài giải F F 1 5, , , 1 m Nm C 8 N F k 19 C ,6 1 C 1,6 1 C 11 5,3 1 m

7 ĐIỆN TRƯỜNG 1. Khái niệm điện tường v Điện tường là một dạng vật chất đặc biện tồn tại xung uanhđiện tích và là nhân tố tung gian để tuyền tương tác giữa cácđiện tích.. Véc tơ cường độ điện tường v Để đặc tưng cho điện tường về mặt lực tác dụng người ta sử dụng đại lượng Cường độ điện tường. v Nếu đặt điện tích tong điện tường của điện tích thì sẽ chịu tác dụng của một lực k v Định nghĩa và biểu thức E F 3 v Đơn vị của cường độ điện tường (N/C) hay (V/m) F

8 ĐIỆN TRƯƠNG 1. Điện tường do một điện tích điểm gây a F F F k E 3

9 ĐIỆN THÔNG, ĐỊNH LÝ OTROGRADKY-GAU 1. Đường sức điện tường v Phương thức mô tả điện tường bằng hình ảnh v Đường sức điện tường là những đường cong vẽ tong điện tường sao cho tiếp tuyến của nó tùng với phương của véc tơ cường độ điện tường tại điểm đó.. Tính chất (cách vẽ đường sức điện tường) v Đường sức điện tường là những đường cong hở v Chiều của đướng sức điện tường là chiều của điện tường (xuất phát từ bề mặt điện tích dương đi a vô cùng hoặc kết thúc tên bề mặt điện tích âm) v ật độ đường sức điện tường tại một điểm bằng tị số của cường độ điện tường tại điểm đó. v Tập hợp tất cả các đường sức điện tường gọi là điện phổ

10 ĐIỆN THÔNG, ĐỊNH LÝ OTROGRADKY-GAU 1. Điện phổ

11 ĐIỆN THÔNG, ĐỊNH LÝ OTROGRADKY-GAU 1. Điện thông (thông lượng điện tường) v ặt phẳng có diện tích đặt tong điện tường đều có cường độ điện tường E. v Thông lượng điện tường: e E v n là véc tơ diện tích, hướng theo phương pháp tuyến của và có độ lớn bằng chính diện tích của mặt v Véc tơ pháp tuyến luôn hướng a phía ngoài của mặt

12 ĐIỆN THÔNG, ĐỊNH LÝ OTROGRADKY-GAU 1. Điện thông (thông lượng điện tường) v Diện tích có hình dạng bất kỳ e d e v Ý nghĩa: Thông lượng điện tường là đại lượng có tị số cân bằng với số đường sức điện tường xuyên ua diện tích đó E d

16 ĐIỆN THẾ 1. Tính chất thế của tường tĩnh điện v Giả sử điện tích di chuyển từ đến N tong điện tường của điện tích v Công của lực điện tường bằng v v v A N da k k A N N F N da ds d N F F ds cos da vì N ds ds cos ds cos d k d k k N

19 ĐIỆN THẾ 1. ặt đẳng thế v ặt đẳng thế là uỹ tích của những điểm có cùng thế năng v Ví dụ Hạt điện tích dương Lưỡng cực điện Hệ hai điện tích dương

20 ĐIỆN THẾ 1. Tính chất của mặt đẳng thế v TC1: Công của lực tĩnh điện tong sự di chuyển một điện tích bất kỳ tên mặt đẳng thế bằng không V A N V N v TC: Véc tơ cường độ điện tường tại mọi điểm tên mặt đẳng thế luôn vuông góc với mặt đẳng thế tại điểm đó A N E ds N F V ds A V N E ds N F ds E ds

【#2】Định Luật Ôm Tổng Quát

Định luật Ôm tổng quát : Khi bắt đầu khám phá thế giới điện và điện tử, điều quan trọng là phải bắt đầu bằng cách hiểu những điều cơ bản về điện áp, dòng điện và điện trở. Đây là ba khối cơ bản cần thiết để sử dụng và sử dụng điện. Lúc đầu, những khái niệm này có thể khó hiểu vì chúng ta không thể “nhìn thấy” chúng. Người ta không thể nhìn thấy bằng mắt thường năng lượng chạy qua dây dẫn hoặc hiệu điện thế của một cục pin đặt trên bàn. Ngay cả những tia sét trên bầu trời, trong khi có thể nhìn thấy được, không thực sự là sự trao đổi năng lượng xảy ra từ các đám mây đến trái đất, mà là một phản ứng trong không khí với năng lượng đi qua nó. Để phát hiện sự chuyển giao năng lượng này, chúng ta phải sử dụng các công cụ đo lường như vạn năng kế, máy phân tích quang phổ và máy hiện sóng để hình dung những gì đang xảy ra với điện tích trong một hệ thống. Tuy nhiên, đừng sợ,

Được đề cập trong Hướng dẫn Định luật Ôm tổng quát

  • Điện áp, dòng điện và điện trở là gì.
  • Định luật Ohm là gì và cách sử dụng nó để hiểu về điện.
  • Một thí nghiệm đơn giản để chứng minh những khái niệm này.

Tham khảo phần trước

Điện tích – Định luật Ôm tổng quát

Điện là chuyển động của các electron. Các electron tạo ra điện tích mà chúng ta có thể khai thác để thực hiện công việc. Bóng đèn, âm thanh nổi, điện thoại của bạn, v.v., tất cả đều đang khai thác chuyển động của các electron để hoạt động. Tất cả chúng đều hoạt động bằng cách sử dụng cùng một nguồn năng lượng cơ bản: chuyển động của các electron.

Ba nguyên tắc cơ bản cho hướng dẫn này có thể được giải thích bằng cách sử dụng các electron, hoặc cụ thể hơn, điện tích mà chúng tạo ra:

  • Hiệu điện thế là hiệu điện tích giữa hai điểm.
  • Dòng điện là tốc độ mà điện tích đang chạy.
  • Điện trở là xu hướng của vật liệu chống lại dòng điện tích (dòng điện).

Vì vậy, khi chúng ta nói về những giá trị này, chúng ta đang thực sự mô tả sự chuyển động của điện tích, và do đó, hành vi của các electron. Mạch là một vòng khép kín cho phép điện tích di chuyển từ nơi này sang nơi khác. Các thành phần trong mạch cho phép chúng ta kiểm soát điện tích này và sử dụng nó để thực hiện công việc.

Georg Ohm là một nhà khoa học người Bavaria, người đã nghiên cứu về điện. Ohm bắt đầu bằng cách mô tả một đơn vị điện trở được xác định bởi dòng điện và điện áp. Vì vậy, hãy bắt đầu với điện áp và đi từ đó.

Vôn – Định luật Ôm tổng quát

Ta định nghĩa điện áp là mức thế năng giữa hai điểm trên đoạn mạch. Một điểm có nhiều điện tích hơn điểm khác. Sự khác biệt về điện tích giữa hai điểm được gọi là hiệu điện thế. Nó được đo bằng vôn, về mặt kỹ thuật, là sự chênh lệch năng lượng tiềm năng giữa hai điểm sẽ truyền một jun năng lượng cho mỗi khối điện tích đi qua nó (đừng hoảng sợ nếu điều này không có ý nghĩa, tất cả sẽ được giải thích). Đơn vị “vôn” được đặt theo tên của nhà vật lý người Ý Alessandro Volta , người đã phát minh ra thứ được coi là pin hóa học đầu tiên. Điện áp được biểu diễn trong phương trình và giản đồ bằng chữ “V”.

Khi mô tả điện áp, dòng điện và điện trở, một phép tương tự phổ biến là bể nước. Trong sự tương tự này, điện tích được biểu thị bằng lượng nước , điện áp được biểu thị bằng áp suất nước và dòng điện được biểu thị bằng lưu lượng nước . Vì vậy, đối với sự tương tự này, hãy nhớ:

Hãy xem xét một bể nước ở một độ cao nhất định so với mặt đất. Ở đáy bể này có một cái vòi.

Áp suất ở cuối ống có thể đại diện cho điện áp. Nước trong bể tượng trưng cho điện tích. Càng nhiều nước trong bình, điện tích càng cao, áp suất đo ở cuối vòi càng nhiều.

Chúng ta có thể coi như một cục pin, là nơi chúng ta tích trữ một lượng năng lượng nhất định rồi giải phóng nó. Nếu chúng ta xả bể một lượng nhất định, áp suất tạo ra ở cuối ống sẽ giảm xuống. Chúng ta có thể coi điều này là giảm điện áp, giống như khi đèn pin mờ đi khi pin cạn kiệt. Lượng nước chảy qua vòi cũng giảm. Áp suất ít hơn có nghĩa là ít nước chảy hơn, điều này mang lại cho chúng ta dòng điện.

Chúng ta có thể coi lượng nước chảy qua vòi từ bể là dòng điện. Áp suất càng cao, lưu lượng càng cao và ngược lại. Với nước, chúng ta sẽ đo thể tích nước chảy qua vòi trong một khoảng thời gian nhất định. Với dòng điện, chúng ta đo lượng điện tích chạy qua mạch trong một khoảng thời gian. Dòng điện được đo bằng Ampe (thường chỉ được gọi là “Amps”). Một ampe được định nghĩa là 6,241 * 10 ^ 18 electron (1 Coulomb) mỗi giây đi qua một điểm trong mạch. Amps được biểu diễn trong phương trình bằng chữ cái “I”.

Giả sử bây giờ chúng ta có hai bể, mỗi bể có một ống dẫn từ dưới lên. Mỗi bể chứa có cùng một lượng nước chính xác, nhưng ống trên một bể hẹp hơn ống bên kia.

Chúng tôi đo cùng một lượng áp suất ở cuối một trong hai ống, nhưng khi nước bắt đầu chảy, tốc độ dòng chảy của nước trong bể có ống hẹp hơn sẽ nhỏ hơn tốc độ chảy của nước trong bể có ống vòi rộng hơn. Về mặt điện, dòng điện qua ống hẹp nhỏ hơn dòng điện qua ống rộng hơn. Nếu chúng ta muốn dòng chảy qua cả hai vòi như nhau, chúng ta phải tăng lượng nước (tính phí) trong bể với ống hẹp hơn.

Điều này làm tăng áp suất (điện áp) ở cuối ống hẹp hơn, đẩy nhiều nước hơn qua bể. Điều này tương tự như sự gia tăng điện áp gây ra sự gia tăng dòng điện.

Bây giờ chúng ta bắt đầu xem mối quan hệ giữa điện áp và dòng điện. Nhưng có một yếu tố thứ ba cần được xem xét ở đây: chiều rộng của ống mềm. Trong sự tương tự này, chiều rộng của ống là sức cản. Điều này có nghĩa là chúng ta cần thêm một thuật ngữ khác vào mô hình của mình:

  • Nước = Điện tích (đo bằng Coulombs)
  • Áp suất = Điện áp (đo bằng Volts)
  • Flow = Dòng điện (đo bằng Ampe, gọi tắt là “Amps”)
  • Chiều rộng ống = Kháng

Hãy xem xét lại hai bể nước của chúng ta, một bể có ống hẹp và một bể có ống rộng.

Đó là lý do mà chúng ta không thể lắp nhiều thể tích qua một đường ống hẹp hơn một đường ống rộng hơn ở cùng áp suất. Đây là sự phản kháng. Đường ống hẹp “chống lại” dòng nước chảy qua nó mặc dù nước ở cùng áp suất với bồn chứa có đường ống rộng hơn.

Trong thuật ngữ điện, điều này được biểu thị bằng hai đoạn mạch có điện áp bằng nhau và điện trở khác nhau. Mạch có điện trở cao hơn sẽ cho phép dòng điện ít hơn, có nghĩa là mạch có điện trở cao hơn có ít dòng điện chạy qua nó hơn.

Điều này đưa chúng ta trở lại Georg Ohm. Ohm định nghĩa đơn vị của điện trở là “1 Ohm” là điện trở giữa hai điểm trong một dây dẫn nơi đặt 1 vôn sẽ đẩy 1 ampe, hay 6,241 × 10 ^ 18 electron. Giá trị này thường được biểu diễn trong sơ đồ bằng chữ Hy Lạp “Ω”, được gọi là omega và được phát âm là “ohm”.

Định luật Ohm

Kết hợp các yếu tố điện áp, dòng điện và điện trở, Ohm đã phát triển Công thức định luật Ôm:

V = I.R

Ở đâu

  • V = Điện áp tính bằng vôn
  • I = Dòng điện trong amps
  • R = Điện trở tính bằng ohms

Đây được gọi là định luật Ohm. Ví dụ, giả sử rằng chúng ta có một đoạn mạch có điện thế 1 vôn, cường độ dòng điện 1 amp và điện trở 1 ohm. Sử dụng Định luật Ohm, chúng ta có thể nói:

Giả sử điều này đại diện cho bể của chúng tôi với một vòi rộng. Lượng nước trong bể được định nghĩa là 1 vôn và “độ hẹp” (khả năng chống dòng chảy) của ống được định nghĩa là 1 ohm. Sử dụng Định luật Ohms, điều này cho chúng ta một dòng (dòng điện) là 1 amp.

Sử dụng phép tương tự này, bây giờ chúng ta hãy nhìn vào bể có ống hẹp. Bởi vì ống hẹp hơn, khả năng chống dòng chảy cao hơn. Hãy xác định mức kháng cự này là 2 ôm. Lượng nước trong bể bằng với bể kia, do đó, sử dụng định luật Ôm, phương trình của bể có ống hẹp là

Nhưng Dòng điện là gì? Bởi vì điện trở lớn hơn và điện áp là như nhau, điều này cho chúng ta giá trị dòng là 0,5 ampe:

1 V = 0,5A.2Ω

Vì vậy, dòng điện thấp hơn trong bình có điện trở cao hơn. Bây giờ chúng ta có thể thấy rằng nếu chúng ta biết hai trong số các giá trị của định luật Ohm, chúng ta có thể giải được giá trị thứ ba. Hãy chứng minh điều này bằng một thí nghiệm.

Một thí nghiệm Định luật Ôm tổng quát

Đối với thí nghiệm này, chúng tôi muốn sử dụng pin 9 volt để cấp nguồn cho đèn LED. Đèn LED rất mỏng manh và chỉ có thể có một lượng dòng điện nhất định chạy qua chúng trước khi chúng bị cháy. Đèn LED, sẽ luôn có “xếp hạng dòng điện”. Đây là lượng dòng điện tối đa có thể chạy qua đèn LED cụ thể trước khi nó bị cháy.

Vật liệu thiết yếu

Để thực hiện các thử nghiệm Định luật Ôm tổng quát được liệt kê ở cuối hướng dẫn, bạn sẽ cần:

  • Đồng hồ vạn năng
  • Pin 9 Volt
  • Điện trở 560 Ohm (hoặc giá trị gần nhất tiếp theo)
  • Đèn LED

LƯU Ý: Đèn LED được gọi là thiết bị “non-ohmic”. Điều này có nghĩa là bản thân phương trình cho dòng điện chạy qua đèn LED không đơn giản như V = IR. Đèn LED giới thiệu một thứ gọi là “sụt áp” vào mạch, do đó thay đổi lượng dòng điện chạy qua nó. Tuy nhiên, trong thí nghiệm này, chúng tôi chỉ đơn giản là cố gắng bảo vệ đèn LED khỏi quá dòng, vì vậy chúng tôi sẽ bỏ qua các đặc tính Dòng điện của đèn LED và chọn giá trị điện trở bằng cách sử dụng Định luật Ohm để đảm bảo rằng dòng điện qua đèn LED là an toàn. 20mA.

Đối với ví dụ này, chúng tôi có pin 9 vôn và đèn LED màu đỏ với định mức Dòng điện là 20 miliampe hoặc 0,020 amps. Để an toàn, chúng tôi không muốn điều khiển đèn LED ở dòng điện tối đa mà thay vào đó là dòng điện được đề xuất của nó, được liệt kê trên biểu dữ liệu là 18mA hoặc 0,018 amps. Nếu chúng ta chỉ kết nối trực tiếp đèn LED với pin, các giá trị của định luật Ohm trông như sau:

Chia cho 0 cho ta dòng điện vô hạn! Trên thực tế, không phải là vô hạn, nhưng dòng điện nhiều nhất có thể của pin. Vì chúng tôi KHÔNG muốn có nhiều dòng điện chạy qua đèn LED của chúng tôi, chúng tôi sẽ cần một điện trở. Mạch của chúng ta sẽ trông như thế này:

Chúng ta có thể sử dụng Định luật Ohm theo cách tương tự để xác định giá trị điện trở sẽ cho chúng ta giá trị dòng điện mong muốn:

V= I.R R=500Ω

Vì vậy, chúng ta cần một giá trị điện trở khoảng 500 ohms để giữ dòng điện qua đèn LED dưới định mức dòng điện tối đa.

500 ohm không phải là giá trị chung cho các điện trở bán sẵn, vì vậy thiết bị này sử dụng điện trở 560 ohm thay thế cho nó. Đây là những gì thiết bị của chúng tôi trông giống như tất cả được ghép lại với nhau.

Sự thành công! Chúng tôi đã chọn một giá trị điện trở đủ cao để giữ dòng điện qua đèn LED dưới mức đánh giá tối đa của nó, nhưng đủ thấp để dòng điện đủ để giữ cho đèn LED sáng và đẹp.

Ví dụ về đèn LED / điện trở giới hạn dòng điện này là một sự xuất hiện phổ biến trong các thiết bị điện tử sở thích. Thường thì bạn sẽ cần sử dụng Định luật Ôm để thay đổi lượng dòng điện chạy qua mạch. Một ví dụ khác về cách triển khai này được thấy trong bảng LED LilyPad.

Với thiết lập này, thay vì phải chọn điện trở cho đèn LED, điện trở đã được tích hợp sẵn với đèn LED để hạn chế dòng điện được thực hiện mà không cần phải thêm điện trở bằng tay.

Giới hạn dòng điện trước hoặc sau đèn LED?

Để làm cho mọi thứ phức tạp hơn một chút, bạn có thể đặt điện trở giới hạn dòng điện ở hai bên của đèn LED và nó sẽ hoạt động giống nhau!

Nhiều người lần đầu tiên học điện tử phải vật lộn với ý tưởng rằng một điện trở giới hạn dòng điện có thể sống ở hai bên của đèn LED và mạch sẽ vẫn hoạt động như bình thường.

Hãy tưởng tượng một dòng sông trong một vòng lặp liên tục, một dòng sông chảy, tròn, vô hạn. Nếu chúng ta đặt một con đập trong đó, toàn bộ dòng sông sẽ ngừng chảy chứ không chỉ một bên. Bây giờ hãy tưởng tượng chúng ta đặt một bánh xe nước trên sông để làm chậm dòng chảy của sông. Bánh xe nước được đặt ở đâu trong vòng tròn sẽ không quan trọng, nó sẽ vẫn làm chậm dòng chảy trên toàn bộ con sông .

Đây là một sự đơn giản hóa quá mức, vì không thể đặt điện trở giới hạn dòng điện ở bất kỳ đâu trong mạch ; nó có thể được đặt ở hai bên của đèn LED để thực hiện chức năng của nó.

Để có câu trả lời khoa học hơn, chúng ta chuyển sang Định luật Điện áp Kirchoff . Chính vì luật này mà điện trở hạn chế dòng điện có thể đi về hai phía của đèn LED mà vẫn có tác dụng tương tự.

【#3】Định Luật Coulomb Về Tĩnh Điện (Phần 1)

Nước Pháp, 1785. Lực hút hay đẩy giữa hai điện tích tỉ lệ thuận với độ lớn của hai điện tích và tỉ lệ nghịch với bình phương khoảng cách giữa chúng.

Định luật Coulomb nói rằng độ lớn của lực F giữa hai điện tích điểm trong không gian tự do được cho bởi

trong đó 10 q1-9 farad/mét), và F được cho theo đơn vị newton. Một coulomb, kí hiệu bằng chữ cái C, được định nghĩa là lượng điện tích đi qua một điểm trên một dây dẫn trong một giây khi dòng điện trong dây bằng một ampere. Nói cách khác, 1 C = 1 A.s. Nếu hai điện tích cùng dấu, thì lực là đẩy. Nếu hai điện tích trái dấu, thì lực là hút. q2 là độ lớn của các điện tích tính theo coulomb, r là khoảng cách giữa hai điện tích tính theo mét, là hằng số điện môi của không gian tự do (8,85 ×

Xét phương trình trên, ta có thể thấy độ lớn của lực tỉ lệ thuận với độ lớn của mỗi điện tích và tỉ lệ nghịch với bình phương khoảng cách giữa chúng. Lực do điện tích điểm này tác dụng lên điện tích điểm kia có phương nằm trên đường tưởng tượng nối giữa hai điện tích.

Các giá trị điện tích có thể xem là cộng được trong trường hợp khi electron và proton kết hợp tạo thành các hạt phức hoặc các tập hợp hạt. Ngoại trừ trường hợp các quark, chúng được xem là có điện tích phân số, toàn bộ điện tích quan sát thấy trong tự nhiên là bội số nguyên của điện tích trên electron ( Qe) hoặc proton ( Qp) có giá trị như sau:

Nhà vật lí hạt nhân Ernest Rutherford (1871-1937) đã tiến hành các thí nghiệm với hạt alpha tán xạ chứng minh rằng Định luật Coulomb là chính xác ngay cả với các hạt tích điện có kích cỡ hạt nhân và cả với các giá trị r nhỏ đến 10 -12 centi-mét. ( Hạt alpha là hạt nhân helium, và chúng gồm hai proton và hai neutron liên kết với nhau.) Thật vậy, ngày nay, các thí nghiệm đã chứng minh rằng Định luật Coulomb có giá trị trên một phạm vi khoảng cách đáng kể, từ nhỏ cỡ 10 -16 mét (một phần mười đường kính của hạt nhân nguyên tử) cho đến lớn cỡ 10 6 mét. Định luật Coulomb chỉ chính xác khi các điện tích đứng yên bởi vì chuyển động tạo ra từ trường làm thay đổi lực tác dụng lên các điện tích.

Lưu ý rằng một coulomb là một điện tích cực kì lớn so với điện tích của một electron hay proton. Để có một cảm giác về độ lớn, hãy xét hai vật, mỗi vật có điện tích toàn phần +1 coulomb. Nếu bạn đặt hai vật này cách nhau một mét, thì lực đẩy sẽ vào khoảng chín tỉ newton, tương ứng với một triệu tấn! Do coulomb là một điện tích khổng lồ như thế, nên thỉnh thoảng các nhà khoa học sử dụng những đơn vị đo nhỏ hơn, ví dụ như micro-coulomb (10 -6 C), pico-coulomb (10 -12 C), hay đơn giản hơn nữa là dùng điện tích electron (1,62 × 10 −19 C).

Định luật Coulomb và Định luật vạn vật hấp dẫn của Newton là ví dụ của cái các nhà vật lí thỉnh thoảng gọi là các định luật “tác dụng xa” – hiểu theo nghĩa là khi các định luật này được thiết lập, người ta chẳng biết môi trường nào truyền tương tác. Định luật Newton mô tả lực hút hấp dẫn của hai khối lượng m1m2 cách nhau một khoảng r và có thể viết là Fg = Gm1m2/ r2, trong đó Fg là độ lớn của lực hấp dẫn.

Ngay cả nhìn sơ bộ hình thức toán học của Định luật Newton và Định luật Coulomb ta cũng thấy hai công thức có những tương đồng đến bất ngờ. Cả lực tĩnh điện và lực hấp dẫn đều tỉ lệ thuận với tích của các thực thể đang tương tác (khối lượng hoặc điện tích), và cả hai lực đều tỉ lệ nghịch với bình phương khoảng cách.

Cũng độ trễ này ứng với các khối lượng có lực hút hấp dẫn, như trong trường hợp Trái Đất quay xung quanh Mặt Trời. Nếu Mặt Trời đột ngột biến mất, thì Trái Đất vẫn tiếp tục quay xung quanh Mặt Trời bị mất đó trong vài ba phút do bởi tác dụng hấp dẫn không thể truyền đi nhanh hơn tốc độ ánh sáng. Trong thời gian cần thiết cho tác dụng này truyền đi, vật này sẽ tiếp tục chịu tác dụng lực điện hay hấp dẫn từ vật kia như thể vật biến mất vẫn còn tồn tại.

Bất chấp những tương đồng này, tồn tại một khác biệt đáng chú ý giữa Định luật vạn vật hấp dẫn của Newton và Định luật Coulomb – lực Coulomb có thể là hút hay đẩy, còn lực hấp dẫn chỉ là hút. Đồng thời, độ lớn của lực Coulomb phụ thuộc vào môi trường ngăn cách các điện tích, còn lực hấp dẫn độc lập với môi trường. Ví dụ, thừa số của chúng ta trong Định luật Coulomb có thể được viết tổng quát hơn, dùng thay cho :

trong đó hằng số điện môi là một tính chất điện của môi trường bao xung quanh hai điện tích. Kí tự kí hiệu cho hằng số điện môi khi môi trường là chân không. Giá trị của = k, thỉnh thoảng được gọi là hằng số Coulomb, xấp xỉ bằng 9 ×. Môi trường dẫn điện có giá trị hằng số điện môi lớn hơn . Vì chân không không có hạt mang điện, nên hằng số điện môi cho chân không nhỏ hơn cho bất kì môi trường nào khác. Giá trị hằng số điện môi của không khí khô gần với của chân không nên các nhà khoa học thường xem các thí nghiệm tiến hành trong không khí như thể được tiến hành trong chân không.

Hằng số điện môi của một vật liệu thường được cho tương đối so với của không gian tự do. Nếu kí hiệu hằng số điện môi tương đối là , thì hằng số điện môi khi đó được tính bằng cách nhân với . Các giá trị hằng số điện môi tương đối xấp xỉ ở nhiệt độ phòng được cho trong bảng 6, và các giá trị đó có thể biến thiên tùy theo nhiệt độ và thành phần chính xác của vật liệu đang nghiên cứu. Ví dụ, tồn tại một phạm vi giá trị hằng số điện môi đối với những loại giấy khác nhau.

Định luật Coulomb chỉ chính xác đối với điện tích điểm, nghĩa là các điện tích định xứ trong một vùng không gian vô cùng nhỏ. Tuy nhiên, mọi thí nghiệm thực tế đều tiến hành với điện tích trên các vật có kích cỡ hữu hạn. Định luật Coulomb có thể dùng được trong các thí nghiệm với các vật như thế nếu kích cỡ của các vật mang điện là nhỏ hơn nhiều so với khoảng cách giữa các tâm của chúng. Lưu ý rằng trong thời hiện đại, định luật Coulomb đã được khái quát hóa thành dạng vi tích phân có thể dùng cho các điện tích phi chất điểm, và thông thường những khái quát này cũng được gọi là Định luật Coulomb.

Bảng 6. Hằng số điện môi tương đối của một số vật liệu

Nguồn: Glenn Elert, “Dielectrics,” in The Physics Hypertextbook; xem hypertextbook.com/physics/electricity/dielectrics/.

Mặc dù lực đẩy coulomb phải khá mạnh đối với các proton tích điện dương bên trong hạt nhân, song các proton không bay ra xa nhau là do bởi chúng được giữ lại bằng một lực cơ bản khác, lực hạt nhân mạnh, lực này mạnh hơn lực coulomb.

Tôi kết luận mục này với một bài toán ngắn cho thấy một phép tính thực tế vận dụng Định luật Coulomb. Tưởng tượng có hai quả cầu nhỏ, mỗi quả cầu có khối lượng 0,20 gam. Mỗi quả cầu được gắn dưới một sợi dây mảnh dài 50 cm treo vào cùng một điểm trên trần nhà. Do hai quả cầu có điện tích giống nhau, nên chúng đong đưa dưới trần nhà và không chạm vào nhau. Kết quả trong thí nghiệm đặc biệt này, mỗi sợi dây lập góc 37 độ so với đường vuông góc với trần nhà. Để giúp hình dung bài toán này, hãy vẽ một tam giác . Điểm trên cùng biểu diễn điểm treo của hai sợi dây, đỉnh bên trái và bên phải biểu diễn vị trí của hai quả cầu. Nếu chúng ta giả sử điện tích trên mỗi quả cầu là bằng nhau, thì chúng ta có thể xác định mỗi điện tích ấy lớn bao nhiêu.

Để giải bài toán này, ta có thể sử dụng lượng giác đơn giản, đồng thời nhận thấy trọng lượng của một vật bằng khối lượng 10 m của nó nhân với gia tốc trọng trường -3 N. Đây là lực đẩy giữa hai quả cầu. Ta có thể thay lực này vào công thức Định luật Coulomb để tìm điện tích trên mỗi quả cầu: g (bằng 9,8 m/s 2). Trước tiên, xét quả cầu bên trái. Có ba lực tác dụng lên quả cầu: trọng lực hướng xuống ( mg), lực căng T trên sợi dây, và lực đẩy F do điện tích trên quả cầu bên phải tác dụng. Do các quả cầu không chuyển động, nên các lực trên trục x và trục y cân bằng nhau. Như vậy, đối với các lực trên trục x ta có – 0,6 T = 0. Xét các lực trên trục y, ta có 0,8 T – (0,2)(10 -3 kg)(9,8 m/s 2) = 0, cho ta T = 2,45 ××

(Khoảng cách giữa hai quả cầu là 0,60 m, có thể tính được bằng lượng giác, biết chiều dài dây 50 cm và góc 37 10 o.) Giải cho -7 coulomb hay 0,24 q, ta tìm được q xấp xỉ bằng 2,4 ×C, trong đó C là kí hiệu cho micro-coulomb.

Trong một hệ gồm nhiều điện tích điểm, các điện tích tác dụng lực lên nhau, và hợp lực tác dụng lên một điện tích bất kì bằng tổng vector của từng lực do mỗi điện tích khác trong hệ tác dụng lên điện tích đó.

Trích từ Archimedes to Hawking (Clifford Pickover) Vui lòng ghi rõ “Nguồn chúng tôi khi đăng lại bài từ CTV của chúng tôi.

Thêm ý kiến của bạn